Abstract
Ceruloplasmin and transferrin are proteins which play a potential role in the process of breast cancer development. These molecules contain Cu2+ (ceruloplasmin) or Fe3+ ions (transferrin) and thus constitute paramagnetic centers, which can be studied using electron paramagnetic resonance method. The aim of the study was to determine how paramagnetic centers in whole blood of breast cancer patients change under the influence of radiation therapy. Samples of whole blood were taken from 17 women with breast cancer treated with radiotherapy. The measurements were carried out at 170 K using X-band electron paramagnetic resonance (EPR) spectrometer Bruker EMX-10. Two distinct EPR lines, derived from high-spin Fe3+ in transferrin and Cu2+ from ceruloplasmin, were revealed in all frozen samples. The amplitude and integrated intensity of the EPR signal from Cu2+ in ceruloplasmin significantly decreased in all patients after the delivery of the radiation fraction. When comparing the integral intensity of the signal from Fe3+ in transferrin, three different situations were identified which are patient specific: a significant increase, an insignificant change, or a significant decrease after the irradiation. A decreased level of Cu2+ from ceruloplasmin in patients after radiotherapy means a low level of ceruloplasmin in the plasma or an increased content of reduced Cu+ ions. Differences in the integrated intensity of the EPR signal from transferrin translate directly into the amount of bound iron. The observed changes could indicate how well the organism fights against cancer and how easily it adapts to the situation of biochemical stress.
from Enviromental via alkiviadis.1961 on Inoreader http://ift.tt/2wWZ0EX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου