Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Τετάρτη 3 Φεβρουαρίου 2021

Modelling Human Liver Microphysiology on a Chip Through a Finite Element Based Design Approach

xloma.fota13 shared this article with you from Inoreader

Abstract

Organ‐on‐a‐chip are microfluidic devices capable of growing living tissue and replicate the intricate microenvironments of human organs in vitro, being heralded as having the potential to revolutionize biological research and healthcare by enabling unprecedented control over fluid flow, relevant tissue to volume ratio, compatibility with high‐resolution content screening and a reduced footprint. Finite element modelling is proven to be an efficient approach to simulate the microenvironments of organ‐on‐a‐chip devices, and may be used to study the existing correlations between geometry and hydrodynamics, towards developing devices of greater accuracy. The present work aims to refine a steady‐state gradient generator for development of a more relevant human liver model. For this purpose, the finite element method was used to simulate the device and predict which design settings, expressed by individual parameters, would better replicate in vitro the oxy gen gradients found in vivo within the human liver acinus. To verify the model's predictive capabilities, two distinct examples were replicated from literature. Finite element analysis enabled obtaining an ideal solution, designated as liver gradient‐on‐a‐chip, characterized by a novel way to control gradient generation, from which it was possible to determine concentration values ranging between 3% and 12%, thus providing a precise correlation with in vivo oxygen zonation, comprised between 3 − 5% and 10 − 12% within respectively the perivenous and periportal zones of the human liver acinus. Shear stress was also determined to average the value of 0.037 Pa , and therefore meet the interval determined from literature to enhance liver tissue culture, comprised between 0.01 − 0.05 Pa .

This article is protected by copyright. All rights reserved.

View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου