Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Τετάρτη 16 Μαρτίου 2022

Real-time eye state recognition using dual convolutional neural network ensemble

xlomafota.13 shared this article with you from Inoreader

Abstract

Automatic recognition of the eye states is essential for diverse computer vision applications related to drowsiness detection, facial emotion recognition (FER), human–computer interaction (HCI), etc. Existing solutions for eye state detection are either parameter intensive or suffer from a low recognition rate. This paper presents the design and implementation of a vision-based system for real-time eye state recognition on a resource-constrained embedded platform to tackle these issues. The designed system uses an ensemble of two lightweight convolutional neural networks (CNN), each trained to extract relevant information from the eye patches. We adopted transfer-learning-based fine-tuning to overcome the over-fitting issues when training the CNNs on small sample eye state datasets. Once trained, these CNNs are integrated and jointly fine-tuned to achieve enhanced performance. Experimental results manifest the effectiveness of the proposed eye state recognizer that is robust and computationally efficient. On the ZJU dataset, the proposed DCNNE model delivered the state-of-the-art recognition accuracy of 97.99% and surpassed the prior best recognition accuracy of 97.20% by 0.79%. The designed model also achieved competitive results on the CEW and MRL datasets. Finally, the designed CNNs are optimized and ported on two different embedded platforms for real-world applications with real-time performance. The complete system runs at 62 frames per second (FPS) on an Nvidia Xavier device and 11 FPS on a low-cost Intel NCS2 embedded platform using a frame size of 640 \(\times\) 480 pixels resolution.

View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου