Abstract
Aquatic environments are now recognized secondary habitat of potentially pathogenic Escherichia coli. In this study, PCR-based analyses were used to determine the phylogenetic composition and frequency of occurrence of eight clinically significant virulence genes (VGs) in E. coli isolates from sub-tropical Brisbane and cool temperate Tasmania freshwater in Australia. In Brisbane, non-commensal E. coli isolates belonging to the B2 and D phylogenetic group were dominant (72%). A significantly higher number (P < 0.05) of E. coli carrying VGs were detected in the sub-tropical freshwaters compared to the cool temperate water. Furthermore, diarrheagenic pathotype (EHEC) was also observed in the sub-tropical freshwater. The genes east1 and eaeA were significantly more common (P < 0.00001) than other VGs. The eaeA gene which codes for intimin protein along with toxin genes east1, stx 1 , stx 2 , and LT1 were mostly detected in phylogenetic groups B2 and D. The ANOVA results also suggested a statistically significant difference (P < 0.016) between the VGs carried by phylogenetic groups B2 and D. Class 1 integrase (intl1) and class 2 integrase (intl2) genes were detected in 38 (24.83%) and 23 (15.03%) of E. coli isolates, respectively. The Gretna site (Tasmania) with known fecal input from bovine and ovine sources had the highest number of E. coli carrying intl1 (29%) and intl2 (13%) genes. In addition, class 2 integron was more commonly detected in the phylogenetic group B2. The results of this study highlight the need to better understand sources and reasons for the high prevalence of E. coli carrying clinically significant VGs in a sub-tropical environment and its public health implications.
from Environmental Medicine via xlomafota13 on Inoreader http://ift.tt/2trjrpp
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου