Abstract
Water quality is highly dependent on landscape characteristics. This study explored the relationships between landscape patterns and water quality in the Ebinur Lake oasis in China. The water quality index (WQI) has been used to identify threats to water quality and contribute to better water resource management. This study established the WQI and analyzed the influence of landscapes on the WQI based on a stepwise linear regression (SLR) model and geographically weighted regression (GWR) models. The results showed that the WQI was between 56.61 and 2886.51. The map of the WQI showed poor water quality. Both positive and negative relationships between certain land use and land cover (LULC) types and the WQI were observed for different buffers. This relationship is most significant for the 400-m buffer. There is a significant relationship between the water quality index and landscape index (i.e., PLAND, DIVISION, aggregation index (AI), COHESION, landscape shape index (LSI), and largest patch index (LPI)), demonstrated by using stepwise multiple linear regressions under the 400-m scale, which resulted in an adjusted R 2 between 0.63 and 0.88. The local R 2 between the LPI and LSI for forest grasslands and the WQI are high in the Akeqisu River and the Kuitun rivers and low in the Bortala River, with an R 2 ranging from 0.57 to 1.86. The local R 2 between the LSI for croplands and the WQI is 0.44. The local R 2 values between the LPI for saline lands and the WQI are high in the Jing River and low in the Bo River, Akeqisu River, and Kuitun rivers, ranging from 0.57 to 1.86.
from Enviromental via alkiviadis.1961 on Inoreader http://ift.tt/2BQUI2f
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου