Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Δευτέρα 31 Δεκεμβρίου 2018

Pore Network Investigation of Trapped Gas and Foam Generation Mechanisms

Abstract

The mobility of gas is greatly reduced when the injected gas is foamed. The reduction in gas mobility is attributed to the reduction in gas relative permeability and the increase in gas effective viscosity. The reduction in the gas relative permeability is a consequence of the larger amount of gas trapped when foam is present while the increase in gas effective viscosity is explicitly a function of foam texture. Therefore, understanding how foam is generated and subsequent trapped foam behavior is of paramount importance to modeling of gas mobility. In this paper, we push the envelope to enlighten our decisions of which descriptions are most physical to foam flow in porous media regarding both the flowing foam fraction and the rate of generation. We use a statistical pore network interwoven with the invasion percolation with memory algorithm to model foam flow as a drainage process and investigate the dependence of the flowing foam fraction on the pressure gradient and to shed light on foam generation mechanisms. A critical snap-off probability is required for strong foam to emerge in our network. The pressure gradient and, hence, the gas mobility reduction are very low below this critical snap-off probability. Above this snap-off probability threshold, we find that the steady-state flowing lamellae fraction scales as \((\nabla \tilde{p})^{0.19}\) in 2D lattices and as \((\nabla \tilde{p})^{0.32}\) in 3D lattices. Results obtained from our network were convolved with percolation network scaling ideas to compare the probabilities of snap-off and lamella division mechanisms in the network during the initial gas displacement at the leading edge of the gas front. At this front, during strong foam flow, lamella division is practically nonexistent in 2D lattices. In 3D lattices, lamella division occurs, but the probability of snap-off is always greater than the probability of lamella division.



http://bit.ly/2F2M58J

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου