Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Πέμπτη 10 Φεβρουαρίου 2022

Association of machine learning ultrasound radiomics and disease outcome in triple negative breast cancer

xlomafota13 shared this article with you from Inoreader

Am J Cancer Res. 2022 Jan 15;12(1):152-164. eCollection 2022.

ABSTRACT

Triple negative breast cancer (TNBC) is a breast cancer subtype with unfavorable prognosis. We aimed to establish a machine learning-based ultrasound radiomics model to predict disease-free survival (DFS) in TNBC. Invasive TNBC>T1b between January 2009 and June 2018 with preoperative ultrasound were enrolled and assigned to training and independent test cohort. Radiomics and clinicopathological features related with DFS were selected by univariate and multivariate regression analysis. Training cohort of combined features was resampled with SMOTEENN to balance distribution and put into classifiers. Areas Under Curves (AUCs) of models were compared by DeLong's test. 562 women were included with 68 DFS events observed. Twenty prognostic radiomics features were extracted. Machine learning model by Naïve Bayes combining radiomics, clinicopathological features, and SM OTEENN had an AUC of 0.86 (95% CI 0.84-0.88), with sensitivity of 74.7% and specificity of 80.1% in training cohort. In independent test cohort, this three-combination model delivered an AUC of 0.90 (95% CI 0.83-0.95), higher than models based on radiomics (AUC=0.69, P=0.016) or radiomics + SMOTEENN (AUC=0.73, P=0.019). Integrating machine learning radiomics model based on ultrasound and clinicopathological features can predict DFS events for TNBC patients.

PMID:35141010 | PMC:PMC8822271

View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου