Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Κυριακή 30 Δεκεμβρίου 2018

Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study

Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of this approach, a number of numerical examples are presented. We observe that the shear modulus distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed dynamic inverse method improves the quality of the recovered shear modulus distribution significantly. We also study the influence of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in clinical medicine.

from ! Human Diseases via Alexandros G.Sfakianakis on Inoreader http://bit.ly/2RkRhvb

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου