by Yves Charron, Jürgen Willert, Bettina Lipkowitz, Barica Kusecek, Bernhard G. Herrmann, Hermann Bauer
Transmission ratio distortion (TRD) by the mouse t-haplotype, a variant region on chromosome 17, is a well-studied model of non-Mendelian inheritance. It is characterized by the high transmission ratio (up to 99%) of the t-haplotype from t/+ males to their offspring. TRD is achieved by the exquisite ability of the responder (Tcr) to trigger non-Mendelian inheritance of homologous chromosomes. Several distorters (Tcd1-Tcd4), which act cumulatively, together promote the high transmission ratio of Tcr and the t-haplotype. Molecularly, TRD is brought about by deregulation of Rho signaling pathways via the distorter products, which impair sperm motility, and the t-sperm specific rescue of sperm motility by the responder. The t-sperm thus can reach the egg cells faster than +-sperm and fertilize them. Previously we have shown that the responder function is accomplished by a dominant negative form of sperm motility kinase (SMOKTCR), while the distorter functions are accomplished by the Rho G protein regulators TAGAP, FGD2 and NME3 proposed to function in two oppositely acting pathways. Here we identify the RAC1-specific guanine nucleotide exchange factor TIAM2 as modifier of t-haplotype TRD. Tiam2 is expressed in two isoforms, the full-length (Tiam2l) and a short transcript (Tiam2s). Tiam2s expression from the t-allele is strongly increased compared to the wild-type allele. By transgenic approaches we show that Tiam2s enhances t-haplotype transmission, while Tiam2l has the opposite effect. Our data show that a single modifier locus can encode different gene products exerting opposite effects on a trait. They also suggest that the expression ratio of the isoforms determines if the outcome is an enhancing or a suppressive effect on the trait.from Genes Mutations Carcinogenesis via alexandrossfakianakis on Inoreader https://ift.tt/2ND6wva
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου