Abstract
Catalytic reduction of Cr(VI) to less toxic Cr(III) form using metal nanoparticles is one of the novel approaches adopted to deal with Cr toxicity. In this work, we report the fabrication of a facile, reusable, and robust Pd nanoparticles-immobilized catalytic reactor (Pd-NICaR) system using green, environment-friendly gamma radiolytic, and plasma polymerization processes. A room temperature, RF-powered plasma polymerization process was employed to functionalize a polyethylene–polypropylene (PE–PP) non-woven matrix with epoxy group containing monomer 2,3-epoxypropyl methacrylate (EPMA). EPMA-functionalized PE–PP (EPMA-f-PE–PP) substrate was subsequently used as a template for in situ generation and immobilization of Pd NPs via gamma radiolytic route. The samples were characterized using FTIR, SEM, XPS, and XRF techniques. The catalytic efficacy of Pd-NICaR towards Cr(VI) reduction, in the presence of formic acid (FA) as a reductant, was investigated spectrophotometrically, and reaction parameters were optimized at reaction temperature of 50 °C and [FA]/[Cr(VI)] = 680 to achieve catalytic reduction efficiency of 99.7% within 10 min in batch process. The system showed excellent reusability (~ 20 cycles) and storage stability (> 30 days) without substantial loss (~ 11%) of activity. Practical applicability of the robust catalytic system towards Cr(VI) toxicity mitigation was established in continuous flow mode using a fixed-bed column reactor.
from Enviromental via alkiviadis.1961 on Inoreader https://ift.tt/2E2mZmc
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου