Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Κυριακή 19 Ιουνίου 2022

Clinical Significance and Molecular Annotation of Cellular Morphometric Subtypes in Lower Grade Gliomas discovered by Machine Learning

alexandrossfakianakis shared this article with you from Inoreader
Abstract
BACKGROUND
Lower grade gliomas (LGG) are heterogenous diseases by clinical, histological, and molecular criteria. We aimed to personalize the diagnosis and therapy of LGG patients by developing and validating robust cellular morphometric subtypes (CMS) and to uncover the molecular signatures underlying these subtypes.
METHODS
Cellular morphometric biomarkers (CMBs) were identified with artificial intelligence technique from TCGA-LGG cohort. Consensus clustering was used to define CMS. Survival analysis was performed to assess the clinical impact of CMBs and CMS. A nomogram was constructed to predict 3- and 5- year overall survival (OS) of LGG patients. Tumor mutational burden (TMB), and immune cell infiltration between subtypes were analyzed using the Mann-Whitney test. The double-blinded validation for important immunotherapy-related biomarkers were executed using immunohistochemistry (IHC).
RESULTS
We developed a mac hine learning pipeline to extract CMBs from whole slide images of tissue histology; identifying and externally validating robust CMS of LGGs in multi-center cohorts. The subtypes had independent predicted OS across all three independent cohorts. In the TCGA-LGG cohort, patients within the poor-prognosis subtype responded poorly to primary and follow-up therapies. LGGs within the poor-prognosis subtype were characterized by high mutational burden, high frequencies of copy number alterations, and high levels of tumor-infiltrating lymphocytes and immune checkpoint genes. Higher levels of PD-1/PD-L1/CTLA-4 were confirmed by immunohistochemical staining. In addition, the subtypes learned from LGG demonstrates translational impact on glioblastoma (GBM).
CONCLUSIONS
We developed and validated a framework (CMS-ML) for CMS discovery in LGG associated with specific molecular alterations, immune micro-environment, prognosis, and treatment response.
View on Web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου