Στην βιολογία, το περιβάλλον μπορεί να καθοριστεί σαν ενα σύνολο κλιματικών, βιοτικών, κοινωνικών και εδαφικών παραγόντων που δρουν σε έναν οργανισμό και καθορίζουν την ανάπτυξη και την επιβίωση του. Έτσι, περιλαμβάνει οτιδήποτε μπορεί να επηρεάσει άμεσα τον μεταβολισμό ή τη συμπεριφορά των ζωντανών οργανισμών ή ειδών, όπως το φως, ο αέρας, το νερό, το έδαφος και άλλοι παράγοντες. Δείτε επίσης το άρθρο για το φυσικό περιβάλλον και τη φυσική επιλογή.
Στην αρχιτεκτονική, την εργονομία και την ασφάλεια στην εργασία, περιβάλλον είναι το σύνολο των χαρακτηριστικών ενός δωματίου ή κτιρίου που επηρεάζουν την ποιότητα ζωής και την αποδοτικότητα, περιλαμβανομένων των διαστάσεων και της διαρρύθμισης των χώρων διαβίωσης και της επίπλωσης, του φωτισμού, του αερισμού, της θερμοκρασίας, του θορύβου κλπ. Επίσης μπορεί να αναφέρεται στο σύνολο των δομικών κατασκευών. Δείτε επίσης το άρθρο για το δομημένο περιβάλλον.
Στην ψυχολογία, περιβαλλοντισμός είναι η θεωρία ότι το περιβάλλον (με τη γενική και κοινωνική έννοια) παίζει μεγαλύτερο ρόλο από την κληρονομικότητα καθορίζοντας την ανάπτυξη ενός ατόμου. Συγκεκριμένα, το περιβάλλον είναι ένας σημαντικός παράγοντας πολλών ψυχολογικών θεωριών.
Στην τέχνη, το περιβάλλον αποτελεί κινητήριο μοχλό και μούσα εμπνέοντας τους ζωγράφους ή τους ποιητές. Σε όλες τις μορφές της Τέχνης αποτελεί έμπνευση και οι Καλές Τέχνες φανερώνουν την επιρροή οπού άσκησε σε όλους τους καλλιτέχνες με όποιο είδος Τέχνης κι αν ασχολούνται. Ο άνθρωπος μέσα στο περιβάλλον δημιουργεί Μουσική, Ζωγραφική, Ποίηση, Γλυπτική, χορό, τραγούδι, θέατρο, αλλά και όλες οι μορφές τέχνης έχουν άμεση έμπνευση από το περιβάλλον.

Τρίτη 27 Απριλίου 2021

Increasing prediction accuracy of pathogenic staging by sample augmentation with a GAN

xlomafota13 shared this article with you from Inoreader

by ChangHyuk Kwon, Sangjin Park, Soohyun Ko, Jaegyoon Ahn

Accurate prediction of cancer stage is important in that it enables more appropriate treatment for patients with cancer. Many measures or methods have been proposed for more accurate prediction of cancer stage, but recently, machine learning, especially deep learning-based methods have been receiving increasing attention, mostly owing to their good prediction accuracy in many applications. Machine learning methods can be applied to high throughput DNA mutation or RNA expression data to predict cancer stage. However, because the number of genes or markers generally exceeds 10,000, a considerable number of data samples is required to guarantee high prediction accuracy. To solve this problem of a small number of clinical samples, we used a Generative Adversarial Networks (GANs) to augment the samples. Because GANs are not effective with whole genes, we first selected significant genes using DNA mutation data and random forest feature ranking. Next, RNA expression data for selected genes were expanded using GANs. We compared the classification accuracies using original dataset and expanded datasets generated by proposed and existing methods, using random forest, Deep Neural Networks (DNNs), and 1-Dimensional Convolutional Neural Networks (1DCNN). When using the 1DCNN, the F1 score of GAN5 (a 5-fold increase in data) was improved by 39% in relation to the original data. Moreover, the results using only 30% of the data were better than those using all of the data. Our attempt is the first to use GAN for augmentation using numeric data for both DNA and RNA. The augmented datasets obtained using the proposed method demonstrated significantly increased classification accuracy for most cases. By using GAN and 1DCNN in the prediction of cancer stage, we confirmed that good results can be obtained even with small amounts of samples, and it is expected that a great deal of the cost and time required to obtain clinical samples will be reduced. The proposed sample augmentatio n method could also be applied for other purposes, such as prognostic prediction or cancer classification.
View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου